Carotenoids and related polyenes. Part 7. ${ }^{1}$ Total synthesis of crassostreaxanthin B applying the stereoselective rearrangement of tetrasubstituted epoxides \dagger

Chisato Tode, Yumiko Yamano and Masayoshi Ito *
Kobe Pharmaceutical University, Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan

Received (in Cambridge, UK) 5th September 2001, Accepted 29th October 2001
First published as an Advance Article on the web 23rd November 2001
($3 R, 3^{\prime} S$)- and $\left(3 R, 3^{\prime} R\right)$-Crassostreaxanthin B isomers are synthesized by application of the stereoselective rearrangement of tetrasubstituted epoxides $\mathbf{5 a}, \mathbf{b}$. As a result, the absolute configuration at C-3' of $\mathbf{1}$ is determined to be S.

Introduction

In 1992, crassostreaxanthin B 1 (Scheme 1) was isolated by Fujiwara et al. ${ }^{2}$ from the viscera of the edible oyster Crassostrea gigas. The structure of $\mathbf{1}$ including the novel acyclic tetrasubstituted olefinic end group and β-end group with $3 R$ chirality was determined by extensive modern NMR techniques and CD data. However, its absolute configuration at $\mathrm{C}-3^{\prime}$ has remained undetermined. We assumed that the tetrasubstituted olefinic end group was formed in Nature from the epoxide end group of 5,6 -epoxy carotenoids such as halocynthiaxanthin ${ }^{3} \mathbf{2}$ by opening of the C - 6 -oxygen bond of the oxirane ring and subsequent rearrangement of the methyl group at C-1 (Scheme 1, route a) Thus, the absolute configuration at $\mathrm{C}-\mathbf{3}^{\prime}$ in $\mathbf{1}$ is considered to be S, since chiralities at C-3 in most of the known natural epoxy carotenoids are R. On the other hand, mytiloxanthin ${ }^{3 b, 4} \mathbf{3}$ is also believed ${ }^{5}$ to arise from 5,6-epoxy carotenoids by cleavage of the oxirane ring at $\mathrm{C}-5$ and successive ring contraction (a pinacolic rearrangement) (Scheme 1, route b). In the previous communi-
\dagger We have employed the numbering system used in carotenoids.
cation, ${ }^{6}$ we reported the first total synthesis of crassostreaxanthin B 1 via the tetrasubstituted olefinic compound 7 (Scheme 2), prepared by Lewis acid-promoted stereoselective rearrangement of epoxides $\mathbf{5 a}, \mathbf{b}$, and the determination of the absolute configuration at $\mathrm{C}-\mathbf{3}^{\prime}$ in $\mathbf{1}$. Here, we give a full account of the experimental details.

Results and discussion

Synthesis of the tetrasubstituted olefinic compound 7

Among several epoxides previously investigated, ${ }^{7}$ epoxides $\mathbf{4 a}, \mathbf{b}$ (Scheme 2) with the acetoxypropyl group at the C-6 position provided, by treatment with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, the tetrasubstituted olefinic compound $\mathbf{6}$ in reasonable yield. It is significant that 6 was stereoselectively produced from both isomers $4 \mathbf{4}, \mathbf{b}$. However, this reaction was accompanied by the elimination byproduct 8 (Scheme 2). Thus, in order to accomplish the biomimetic synthesis of $\mathbf{1}$, the acetoxy group at the $\mathrm{C}-3$ position in $\mathbf{4 a}, \mathbf{b}$ was replaced by the tert-butyldimethylsilyl (TBS) ether leading to epoxides $\mathbf{5 a}, \mathbf{b}$.

Halocynthiaxanthin 2

Crassostreaxanthin B 1
Scheme 1

As shown in Scheme 3, epoxides 5a,b were synthesized starting from the known optically active ketone $9,{ }^{8}$ which was treated with lithium trimethylsilylacetylide followed by basic hydrolysis to give the α-acetylenic alcohol $\mathbf{1 0}$ as a single product (98% from 9). By rearrangement using tris(triphenylsilyl)vanadate (TPSV) catalyst, ${ }^{9,10}$ this was converted to the β, γ-unsaturated aldehyde $\mathbf{1 1}$ quantitatively. Reduction of the formyl group in 11 with NaBH_{4} gave the alcohol 12, which was mesylated with MsCl in pyridine (Py) followed by treatment with KCN in the presence of 18 -crown- 6 to provide the nitrile $13(89 \%$ from 12). The nitrile $\mathbf{1 3}$ was transformed by DIBAL-H and successive NaBH_{4} reduction into the alcohol $14(73 \%)$, which was acetylated to provide compound $\mathbf{1 5}$ (94%). Epoxidation of 15 with MCPBA led to a mixture of the anti-epoxide 5a and the syn-epoxide $\mathbf{5 b}(98 \% ; \mathbf{5 a}: \mathbf{5 b}=c a .2: 3)$, which were separated by column chromatography (CC) to yield the respective isomers in pure state. The relative configurations between the silyloxy and epoxy groups in the two isomers were confirmed by their ${ }^{1} \mathrm{H}$ NMR data. ${ }^{8}$ Thus, epoxides $\mathbf{5 a}, \mathbf{b}$ were prepared in 10 steps from the ketone 9 in excellent overall yield (58%).

Reaction of syn-epoxide $\mathbf{5 b}$ with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ as a Lewis acid provided the desired olefinic compound $7(66 \%)$ and its deprotected alcohol $\mathbf{1 6}(19 \%)$. Resilylation of $\mathbf{1 6}$ resulted in the easy formation of 7. On the other hand, the same treatment of antiepoxide 5a gave $16(29 \%)$ and the cyclopentyl compound 17a (32%), both of which were deprotected products. This is presumably due to the longer reaction time of $\mathbf{5 a}$ than that of $\mathbf{5 b}$. Consequently, the change (Ac to TBS) of protecting group at the C-3 position was found to block the production of the elimination product 8 (Scheme 2). Structures of the products 7, 16 and 17 a were deduced on the basis of their spectral data in comparison with previous results. ${ }^{7}$ As the result of optimization
of this rearrangement, it was found that treatment of a mixture of $\mathbf{5 a}, \mathbf{b}$ using SnCl_{4} as a Lewis acid at low temperature provided the tetrasubstituted olefinic compounds $\mathbf{7}$ and 16 in high yield.

Synthesis of ($\mathbf{3 R}, \mathbf{3}^{\prime} \boldsymbol{S}$)-crassostreaxanthin B 1a

Synthesis of ($3 R, 3^{\prime} S$)-crassostreaxanthin B 1a was accomplished in 15 steps from the tetrasubstituted olefin 7 (Scheme 4). Ketalization ${ }^{11}$ of 7 with ethylene glycol TMS ether (78%) followed by resilylation (92%) of the alcohol 18 gave 19 whose acetate moiety was reduced with LAH followed by PDC oxidation ${ }^{12}$ to afford the carboxylic acid 20. Treatment of 20 with $\mathrm{TMSCHN}_{2}{ }^{13}$ yielded the methyl ester 21 (64% from 19). According to the developed method by Davis et al., ${ }^{14}$ the hydroxy group was introduced into the ester 21 by use of (+)camphorylsulfonyloxaziridine $\mathbf{2 2}$ in the presence of LDA to give the α-hydroxy ester $23(52 \%)$ as a diastereomeric mixture which, without separation, was reduced with LAH and the resulting glycol 24 was cleaved with NaIO_{4} to afford the aldehyde $\mathbf{2 5}$ (92% from 23). Reaction of this aldehyde $\mathbf{2 5}$ with vinyllithium prepared from the vinyl bromide $\mathbf{2 6}^{15}$ and ${ }^{t} \mathrm{BuLi}$ gave the allyllic alcohol 27, which was subjected to oxidation with MnO_{2} and partial deprotection with TBAF followed by MnO_{2} oxidation to yield the C_{15}-aldehyde 28 (53% from 25).

The Wittig condensation of 28 with the C_{10}-phosphonium salt $\mathbf{3 0}^{16}$ in the presence of NaOMe as a base followed by acid hydrolysis provided an isomeric mixture of C_{25}-apocarotenal 31 whose main isomer was shown to be all- E one by HPLC and ${ }^{1} \mathrm{H}$ NMR analysis.
Finally, the Wittig condensation between C_{25}-apocarotenal 31 and C_{15}-phosphonium salt $\mathbf{3 2}{ }^{17}$ using NaOMe as a base followed by deprotection of all protecting groups with PTSA gave an isomeric mixture of target compound, which was purified by repeated preparative HPLC (PHPLC) in the dark to afford ($3 R, 3^{\prime} S$-all- E)-crassostreaxanthin B 1a (6% from 28) and a small amount of other isomers. Spectral data (IR, UV-VIS, ${ }^{1} \mathrm{H}$ NMR and MS) of synthetic 1a were in good agreement with those of a natural specimen. ${ }^{2}$ However, the absolute configuration at $\mathrm{C}-3^{\prime}$ in the native sample ${ }^{18}$ could not be confirmed by comparison of CD data of synthetic and natural samples because these did not exhibit a clear Cotton effect.

Synthesis of ($3 R, 3^{\prime} R$)-crassostreaxanthin B 1b and determination of the absolute configuration of natural crassostreaxanthin B

In order to confirm the absolute configuration at $\mathrm{C}-3^{\prime}$ in the native sample, ($3 R, 3^{\prime} R$)-crassostreaxanthin B 1b was independ-

Scheme 3 Reagents and conditions: a, LiC \equiv CTMS; b, 10% aq. KOH ; c, TPSV (0.02 eq.), $\mathrm{PhCO}_{2} \mathrm{H}$ (0.02 eq.), commercial xylenes, reflux; d, NaBH_{4}; e, $\mathrm{MsCl}, \mathrm{Py}$; f, KCN, 18-crown-6; g, DIBAL-H; h, $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Py}$; i, MCPBA: j, TBDMSCl, $\mathrm{Et}_{3} \mathrm{~N}$, DMAP.
ently synthesized via ($3 S$)-aldehyde $\mathbf{1 1}$ from the ($4 S, 6 R$)hydroxy ketone 33^{19} (Scheme 5) in the same manner as that described in the synthesis of $\left(3 R, 3^{\prime} S\right)$-isomer 1a. High optical purity of the ($3 S$)-aldehyde $\mathbf{1 1}$ was confirmed from the result that the absolute value of specific rotation $\left\{[a]_{D}^{26}+17 \times 10^{-1}\right.$ deg $\left.\mathrm{cm}^{2} \mathrm{~g}^{-1}(c 1.00 \mathrm{MeOH})\right\}$ of $(3 S)-11$ was the same as that of (3R)-aldehyde $11\left\{[a]_{\mathrm{D}}^{26}-18(c 1.00 \mathrm{MeOH})\right\}$.

Separation of $\left(3 R, 3^{\prime} S\right)$-1a and $\left(3 R, 3^{\prime} R\right)$-1b on HPLC using a chiral column (CHIRALCEL OD; DAICEL) was achieved. By co-chromatography with the synthetic samples $\mathbf{1 a}$ and $\mathbf{1 b}$, the native specimen ${ }^{18}$ was shown to be identical with 1b. Accordingly, the absolute configuration at the $\mathrm{C}-3^{\prime}$ position of natural crassostreaxanthin B was confirmed to be S.

This is the first biomimetic total synthesis of optically active crassostreaxanthin B $\mathbf{1}$ by application of the stereoselective rearrangement of epoxides $\mathbf{5 a}, \mathbf{b}$ with SnCl_{4}.

Experimental

UV-VIS spectra were recorded on a JASCO Ubest-55 instrument. IR spectra were measured on a Shimadzu IR-27G spectrometer, or a Perkin-Elmer FT-IR spectrometer, model Paragon 1000, for chloroform solutions unless otherwise stated. ${ }^{1} \mathrm{H}$ NMR spectra at 200,300 or 500 MHz were determined on a Varian Gemini-200, a Varian Gemini-300, or a Varian VXR500 superconducting FT-NMR spectrometer, respectively, for

Scheme 4 Reagents and conditions: a, $\left(\mathrm{CH}_{2} \mathrm{OTMS}\right)_{2}$, cat. TMSOTf; b, TBSOTf, 2,6-lutidine; c, LAH; d, PDC, DMF; e, TMSCHN 2 ; f, LDA, 22; g, $\mathrm{NaIO}_{4} ; \mathrm{h}, \mathbf{2 6},{ }^{\dagger} \mathrm{BuLi} ;$ i, MnO_{2}; j, TBAF; k, $\mathrm{HC}(\mathrm{OMe})_{3}$, cat. $\mathrm{H}^{+} ; 1,1 \mathrm{M} \mathrm{NaOMe}$, then H^{+}; m, 32, $1 \mathrm{M} \mathrm{NaOMe;} \mathrm{n}, \mathrm{PTSA}$.

Scheme 5 Reagents and conditions: a, TMSCl, $\mathrm{Et}_{3} \mathrm{~N}$; b, LiC $\equiv \mathrm{CTMS}$; c, 10% aq. KOH ; d, $\mathrm{TBSCl}, \mathrm{Et}_{3} \mathrm{~N}$, DMAP; e, TPSV (0.02 eq.), $\mathrm{PhCO}_{2} \mathrm{H}$ (0.02 eq.), commercial xylenes, reflux.
deuteriochloroform solutions (tetramethylsilane as internal reference). J-Values are given in Hz . Locants reported in the NMR spectra follow the carotenoid numbering displayed in the Schemes, and do not necessarily follow the systematic nomenclature used to name each individual compound. Mass spectra were taken on a Hitachi M-4100 spectrometer. Optical rotations were measured on a JASCO DIP-181 polarimeter ($[a]_{\mathrm{D}}$-values are in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$).

Column chromatography (CC) was performed on silica gel (Merck Art. 7734). Short-column chromatography (SCC) was performed on silica gel(Merck Art. 7739) under reduced pressure. Analytical and PHPLC was carried out on Shimadzu LC-5A and 6A, or Waters 510 and 515 instruments with a UV-VIS detector.

Standard work-up means that the organic layers or extracts were finally washed with brine, dried over anhydrous sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo below $30^{\circ} \mathrm{C}$ using a rotary evaporator. All operations were carried out under nitrogen or argon. Hexane refers to n-hexane.

(1S,4R,6R)-4-tert-Butyldimethylsilyloxy-1-ethynyl-2,2,6-trimethylcyclohexanol 10

BuLi (1.53 M in hexane; $49 \mathrm{ml}, 75 \mathrm{mmol}$) was added to a solution of TMSacetylene ($10.6 \mathrm{ml}, 75 \mathrm{mmol}$) in dry THF (25 ml) at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred for a further 30 min . To this mixture was added dropwise a solution of the ketone $9^{8}(13.5 \mathrm{~g}$, $50 \mathrm{mmol})$ in dry THF $(25 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 30 min . The reaction was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$. After evaporation off of the THF, the residue was extracted with $\mathrm{Et}_{2} \mathrm{O}$. Standard work-up gave the crude compound which, without purification, was dissolved in MeOH $(50 \mathrm{ml})$, and 10% aq. $\mathrm{KOH}(20 \mathrm{ml})$ was added to it. After being stirred at rt for 1 h , the reaction mixture was evaporated to remove the MeOH , and the residue was extracted with $\mathrm{Et}_{2} \mathrm{O}$. Standard work-up afforded a residue, which was purified by CC ($\mathrm{Et}_{2} \mathrm{O}$-hexane, $1: 9$) to give the acetylenic alcohol $10(14.56 \mathrm{~g}$, 98%) as a colorless oil; $v_{\text {max }} / \mathrm{cm}^{-1} 3608(\mathrm{OH}), 3305(\equiv \mathrm{CH}), 2107$ $(\mathrm{C} \equiv \mathrm{C}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.02(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe} \times 2), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}{ }^{\prime} \mathrm{Bu}\right)$, $1.06(3 \mathrm{H}, \mathrm{d}, J 6.5,5-\mathrm{Me}), 1.08$ and 1.20 (each 3 H , s, gem-Me), $1.46-1.71\left(4 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right.$ and $\left.4-\mathrm{H}_{2}\right), 1.86(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.31$ $(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.45(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 3.94(1 \mathrm{H}$, quint, $J 3,3-\mathrm{H})$ [Found: $\left(\mathrm{M}-\mathrm{CH}_{3}\right)^{+}$, 281.1928. $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{Si}$ requires $M-\mathrm{CH}_{3}$, 281.1938]

[(4R)-4-tert-Butyldimethylsilyloxy-2,6,6-trimethylcyclohex-1-enyl]acetaldehyde 11

To a solution of the acetylenic alcohol $10(14.42 \mathrm{~g}, 49 \mathrm{mmol})$ in xylenes (100 ml) were added $\left(\mathrm{Ph}_{3} \mathrm{SiO}\right)_{3} \mathrm{VO}(869 \mathrm{mg}, 0.97 \mathrm{mmol})$ and $\mathrm{PhCO}_{2} \mathrm{H}(119 \mathrm{mg}, 0.97 \mathrm{mmol})$, then the reaction mixture was refluxed for 3.5 h . After evaporation off of the solvent, the residue was purified by SCC (acetone-hexane, 1:9) to give the β, γ-unsaturated aldehyde 11 (14.42 g , quant.) as a colorless oil; $[a]_{\mathrm{D}}^{26}-18.0(c \quad 1.00, \mathrm{MeOH}) ; v_{\max } / \mathrm{cm}^{-1} 1718(\mathrm{CHO}) ; \delta_{\mathrm{H}}$ $(300 \mathrm{MHz}) 0.08(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe} \times 2), 0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}^{\prime} \mathrm{Bu}\right), 0.99$ and 1.00 (each 3 H , s, gem-Me), $1.52\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.58(3 \mathrm{H}, \mathrm{s}$, $5-\mathrm{Me}), 1.67\left(1 \mathrm{H}\right.$, ddd, $J 12,3.5$ and $\left.2.5,2-\mathrm{H}_{\mathrm{eq}}\right), 2.09(1 \mathrm{H}$, dd, $J 16.5$ and $\left.9,4-\mathrm{H}_{\text {ax }}\right), 2.21\left(1 \mathrm{H}, \mathrm{dd}, J 16.5\right.$ and $\left.5.5,4-\mathrm{H}_{\text {eq }}\right), 3.08$ $\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 7-\mathrm{H}_{2}\right), 3.94(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 9.50(1 \mathrm{H}, \mathrm{t}, J 2.5, \mathrm{CHO})$ [Found: $\left(\mathrm{M}-\mathrm{CH}_{3}\right)^{+}$, 281.1916. $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{Si}$ requires $M-\mathrm{CH}_{3}$, 281.1938]

2-[(4R)-4-tert-Butyldimethylsilyloxy-2,6,6-trimethylcyclohex-1-enyl]ethanol 12

$\mathrm{NaBH}_{4}(1.85 \mathrm{~g}, 49 \mathrm{mmol})$ was added to an ice-cooled solution of the aldehyde $\mathbf{1 1}(14.42 \mathrm{~g}, 49 \mathrm{mmol})$ in $\mathrm{MeOH}(80 \mathrm{ml})$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min and then poured into icewater, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. Standard work-up afforded a residue, which was purified by SCC (acetone-hexane, 1:4) to yield the alcohol $12(14.44 \mathrm{~g}, 99 \%)$ as a colorless oil; $[a]_{\mathrm{D}}^{27}-48.0$
$(c 1.00, \mathrm{MeOH}) ; v_{\text {max }} / \mathrm{cm}^{-1} 3621$ and $3453(\mathrm{OH}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz})$ $0.07(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe} \times 2), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}^{\mathrm{t}} \mathrm{Bu}\right), 1.02$ and 1.03 (each 3 H , s, gem-Me), $1.44\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.61\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{eq}}\right)$, $1.64(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.99\left(1 \mathrm{H}\right.$, ddd, $J 16.5,9.5$ and $\left.1,4-\mathrm{H}_{\mathrm{ax}}\right), 2.11$ (1 H, br dd, $J 16.5$ and $6,4-\mathrm{H}_{\text {eq }}$), $2.33\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right), 3.59(2 \mathrm{H}$, $\left.\mathrm{m}, 8-\mathrm{H}_{2}\right), 3.89(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ [Found: $\left(\mathrm{M}-\mathrm{CH}_{3}\right)^{+}, 283.2084$. $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{O}_{2}$ Si requires $M-\mathrm{CH}_{3}$, 283.2094].

3-[(4R)-4-tert-Butyldimethylsilyloxy-2,6,6-trimethylcyclohex-1-enyl]propanenitrile 13

$\mathrm{MsCl}(4.64 \mathrm{ml}, 60 \mathrm{mmol})$ was added to a solution of the alcohol $12(9.18 \mathrm{~g}, 31 \mathrm{mmol})$ in dry Py $(20 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at rt for 1 h . The reaction mixture was poured into ice-water, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extracts were washed successively with 5% aq. HCl , saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts gave a residue, which was purified by $\mathrm{SCC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $3: 17$) to afford the mesylester ($10.55 \mathrm{~g}, 91 \%$) as a colorless oil. $\mathrm{KCN}(3.65 \mathrm{~g}, 56 \mathrm{mmol})$ was added to a solution of the mesylester ($10.55 \mathrm{~g}, 28 \mathrm{mmol}$) and 18-crown-6 ($740 \mathrm{mg}, 2.8 \mathrm{mmol}$) in dry DMSO $(60 \mathrm{ml})$ at rt and the mixture was stirred vigorously and warmed at $120^{\circ} \mathrm{C}$ for 16 h . After cooling, the mixture was poured into ice-water carefully and extracted with $\mathrm{Et}_{2} \mathrm{O}$. Standard work-up gave a residue, which was purified by $\mathrm{SCC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $\left.1: 9\right)$ to afford the nitrile 13 ($7.64 \mathrm{~g}, 89 \%$) as a colorless oil; $[a]_{\mathrm{D}}^{25}-41.0$ (c 1.00, $\mathrm{MeOH}) ; v_{\text {max }} / \mathrm{cm}^{-1} 2247(\mathrm{CN}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.06(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$ $\times 2), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}^{\prime} \mathrm{Bu}\right), 1.02$ and 1.03 (each $3 \mathrm{H}, \mathrm{s}$, gem-Me), $1.44\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.62\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{eq}}\right), 1.63(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me})$, $1.99\left(1 \mathrm{H}, \mathrm{br}\right.$ dd, $J 17$ and $\left.9,4-\mathrm{H}_{\mathrm{ax}}\right), 2.13(1 \mathrm{H}$, ddd, $J 17,5.5$ and $\left.1,4-\mathrm{H}_{\mathrm{eq}}\right), 2.38\left(4 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right.$ and $\left.8-\mathrm{H}_{2}\right), 3.88(1 \mathrm{H}, \mathrm{m}$, 3-H) [Found: $\left(\mathrm{M}-\mathrm{CH}_{3}\right)^{+}$, 292.2122. $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{NOSi}$ requires $\left.M-\mathrm{CH}_{3}, 292.2096\right]$.

3-[(4R)-4-tert-Butyldimethylsilyloxy-2,6,6-trimethylcyclohex-1-enyl]propan-l-ol 14

A solution of DIBAL-H (1.0 M in hexane; $43 \mathrm{ml}, 43 \mathrm{mmol}$) was added to a solution of the nitrile $\mathbf{1 3}(6.28 \mathrm{~g}, 20.5 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(70 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . The excess of DIBAL-H was destroyed by addition of water and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. Standard work-up gave the aldehyde which, without purification, was dissolved in $\mathrm{MeOH}(35 \mathrm{ml}) . \mathrm{NaBH}_{4}(780 \mathrm{mg}, 20.5 \mathrm{mmol})$ was added to the solution at $0{ }^{\circ} \mathrm{C}$ and this was stirred at $0^{\circ} \mathrm{C}$ for 20 min . After evaporation of MeOH , the residue was extracted with $\mathrm{Et}_{2} \mathrm{O}$. Standard work-up gave a residue, which was purified by SCC (acetone-hexane, $1: 4$) to afford the alcohol $14(4.66 \mathrm{~g}, 73 \%)$ as a colorless oil; $[a]_{\mathrm{D}}^{25}-44.0(c 1.00, \mathrm{MeOH}) ; v_{\max } / \mathrm{cm}^{-1} 3624$ and $3453(\mathrm{OH}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.07(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe} \times 2), 0.89(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{Si}^{\prime} \mathrm{Bu}\right), 1.01$ and 1.03 (each 3 H , s, gem-Me), $1.45(1 \mathrm{H}, \mathrm{t}, J 12$, $\left.2-\mathrm{H}_{\mathrm{ax}}\right), 1.62\left(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{eq}}\right.$ and $\left.7-\mathrm{H}_{2}\right), 1.60(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me})$, $2.02\left(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right.$ and $\left.8-\mathrm{H}_{2}\right), 3.64\left(2 \mathrm{H}, \mathrm{t}, J 6.5,9-\mathrm{H}_{2}\right), 3.90(1 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}$) [Found: $\left(\mathrm{M}-\mathrm{CH}_{3}\right)^{+}$, 297.2263. $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{Si}$ requires $\left.M-\mathrm{CH}_{3}, 297.2254\right]$.

3-[(4R)-4-tert-Butyldimethylsilyloxy-2,6,6-trimethylcyclohex-1-enyl]propyl acetate 15

$\mathrm{Ac}_{2} \mathrm{O}(6 \mathrm{ml})$ was added to a solution of the alcohol $\mathbf{1 4}(3.04 \mathrm{~g}$, $9.74 \mathrm{mmol})$ in dry Py (7 ml) at rt and the mixture was stirred at rt for 16 h . The reaction mixture was poured into ice-water, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extracts were washed successively with 5% aq. HCl , saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts gave a residue, which was purified by SCC ($\mathrm{Et}_{2} \mathrm{O}$-hexane, $1: 9$) to afford the acetate $15(3.24 \mathrm{~g}, 94 \%)$ as a colorless oil; $[a]_{\mathrm{D}}^{26}-42.0(c 1.00, \mathrm{MeOH}) ; v_{\max } / \mathrm{cm}^{-1} 1731(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.06(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe} \times 2), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}{ }^{\prime} \mathrm{Bu}\right), 1.00$ and 1.01 (each 3 H , s, gem-Me), $1.44\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.59$ $(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.59\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{eq}}\right), 1.68\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right), 1.91(2 \mathrm{H}$, $\left.\mathrm{m}, 8-\mathrm{H}_{2}\right), 1.99\left(1 \mathrm{H}, \mathrm{dd}, J 16.5\right.$ and $\left.9,4-\mathrm{H}_{\mathrm{ax}}\right), 2.05(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$,
$2.09\left(1 \mathrm{H}, \mathrm{br}\right.$ dd, $J 16.5$ and $\left.6,4-\mathrm{H}_{\mathrm{eq}}\right), 3.89(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.05$ $\left(2 \mathrm{H}, \mathrm{t}, J 6.5,9-\mathrm{H}_{2}\right)$ [Found: $\left(\mathrm{M}-\mathrm{CH}_{3}\right)^{+}$, 339.2367. $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{O}_{3} \mathrm{Si}$ requires $\left.M-\mathrm{CH}_{3}, 339.2357\right]$.

3-[(1S,4S,6R)- and ($1 R, 4 S, 6 S)-4$-tert-Butyldimethylsilyloxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]propyl acetate 5a and 5b

A solution of MCPBA $(70 \%, 1.88 \mathrm{~g}, 7.62 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(30 \mathrm{ml})$ was added to an ice-cooled solution of the acetate $\mathbf{1 5}$ $(2.08 \mathrm{~g}, 5.88 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$. After being stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h , the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed successively with 1% aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, saturated aq NaHCO_{3} and brine. Evaporation of the dried extracts gave a residue, which was purified by $\mathrm{SCC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $\left.1: 4\right)$ to afford a diastereomeric mixture of epoxides 5a and 5b (ca.2:3) $(2.13 \mathrm{~g}, 98 \%)$ as a colorless oil. Purification of a part of this mixture by CC (benzene-hexane, $2: 98$) gave each isomer, the anti-epoxide $\mathbf{5 a}$ and syn-epoxide $\mathbf{5 b}$, in a pure form.
anti-Epoxide 5a. $[a]_{\mathrm{D}}^{26}-16.0(c 1.00, \mathrm{MeOH}) ; v_{\max } / \mathrm{cm}^{-1} 1732$ $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.03(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe} \times 2), 0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}^{i} \mathrm{Bu}\right)$, 1.03 and 1.15 (each 3 H , s, gem-Me), $1.19(1 \mathrm{H}, \mathrm{dd}, J 13$ and 10, $\left.2-\mathrm{H}_{\mathrm{ax}}\right), 1.31(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.43(1 \mathrm{H}$, ddd, $J 13,3.5$ and 2 , $\left.2-\mathrm{H}_{\mathrm{eq}}\right), 1.62\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.8,4-\mathrm{H}_{\mathrm{ax}}\right), 1.79\left(4 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right.$ and $\left.8-\mathrm{H}_{2}\right), 2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.18\left(1 \mathrm{H}\right.$, ddd, $J 14.5,5$ and $\left.2,4-\mathrm{H}_{\mathrm{eq}}\right)$, $3.77(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.03\left(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{2}\right)$ [Found: $\left(\mathrm{M}-\mathrm{CH}_{3}\right)^{+}$, 355.2289. $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{O}_{4}$ Si requires $\mathrm{M}-\mathrm{CH}_{3}, 355.2306$].
syn-Epoxide 5b. $[\alpha]_{\mathrm{D}}^{25}-27.0(c 1.00, \mathrm{MeOH}) ; v_{\max } / \mathrm{cm}^{-1} 1732$ $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.03(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe} \times 2), 0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}^{t} \mathrm{Bu}\right)$, 1.03 and 1.07 (each 3 H , s, gem-Me), $1.10(1 \mathrm{H}$, ddd, $J 12.5$, 4 and $\left.2,2-\mathrm{H}_{\mathrm{eq}}\right), 1.25(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.52\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.68(4 \mathrm{H}$, $\mathrm{m}, 7-\mathrm{H}_{2}$ and $\left.8-\mathrm{H}_{2}\right), 1.80\left(1 \mathrm{H}, \mathrm{dd}, J 15\right.$ and $\left.9.5,4-\mathrm{H}_{\mathrm{ax}}\right), 1.99(1 \mathrm{H}$, ddd, $J 15,7.5$ and $\left.2,4-\mathrm{H}_{\mathrm{eq}}\right), 2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 3.76(1 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H}), 4.03\left(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{2}\right)$ [Found: $\left(\mathrm{M}-\mathrm{CH}_{3}\right)^{+}, 355.2303$ $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{O}_{4} \mathrm{Si}$ requires $\left.M-\mathrm{CH}_{3}, 355.2306\right]$.

Rearrangement of syn-epoxide $\mathbf{5 b}$ using $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$

To a solution of $\mathbf{5 b}(200 \mathrm{mg}, 0.54 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added dropwise $47 \% \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.49 \mathrm{~g}, 1.62 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$ and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and the organic layer was washed successively with saturated aq. NaHCO_{3} and brine. Evaporation of the dried solution gave a residue, which was purified by $\mathrm{SCC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $\left.3: 7\right)$ to afford the tetrasubstituted olefinic compound $7(131 \mathrm{mg}, 66 \%)$ and the deprotected compound 16 ($27 \mathrm{mg}, 19 \%$) as colorless oils, respectively.

Tetrasubstituted olefin 7. $[a]_{\mathrm{D}}^{26}+8.12(c \quad 1.11, \mathrm{MeOH}) ; v_{\max } /$ $\mathrm{cm}^{-1} 1724(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.02$ and 0.05 (each 3 H , s , $\mathrm{SiMe} \times 2), 0.85\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}^{t} \mathrm{Bu}\right), 1.65$ and $1.66($ each $3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$ and $6-\mathrm{Me}), 1.67\left(2 \mathrm{H}\right.$, quint-like, $\left.J 8,8-\mathrm{H}_{2}\right), 2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$, $2.06\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right), 2.14(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 2.22\left(2 \mathrm{H}, \mathrm{d}, J 6.5,4-\mathrm{H}_{2}\right)$, $2.41(1 \mathrm{H}$, dd, $J 15.5$ and $4.5,2-\mathrm{H}), 2.55(1 \mathrm{H}, \mathrm{dd}, J 15$ and 7.5 , $2-\mathrm{H}), 4.02\left(2 \mathrm{H}, \mathrm{t}, J 7,9-\mathrm{H}_{2}\right), 4.28(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ [Found: $(\mathrm{M}-$ $\left.\mathrm{CH}_{3}\right)^{+}, 355.2282 . \mathrm{C}_{19} \mathrm{H}_{35} \mathrm{O}_{4} \mathrm{Si}$ requires $\left.M-\mathrm{CH}_{3}, 355.2306\right]$.

Deprotected compound 16. $[\alpha]_{\mathrm{D}}^{27}+3.64(c 1.10, \mathrm{MeOH}) ; v_{\max } /$ $\mathrm{cm}^{-1} 3673$ and $3468(\mathrm{OH}), 1728(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.67(6 \mathrm{H}$, $\mathrm{s}, 5-\mathrm{Me}$ and $6-\mathrm{Me}), 1.70\left(2 \mathrm{H}, \mathrm{tt}, J 8\right.$ and $\left.6.5,8-\mathrm{H}_{2}\right), 2.04(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OAc}), 2.12\left(2 \mathrm{H}, \mathrm{t}, J 8,7-\mathrm{H}_{2}\right), 2.13(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and $4,2-\mathrm{H})$, $2.18(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 2.33(1 \mathrm{H}$, dd, $J 13.5$ and $7.5,2-\mathrm{H}), 2.56(1 \mathrm{H}$, $\mathrm{d}, J 7.5,4-\mathrm{H}), 2.56(1 \mathrm{H}, \mathrm{d}, J 4.5,4-\mathrm{H}), 4.02(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J 6.5$, $9-\mathrm{H}_{2}$), 4.17 ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$) (Found: M^{+}, 256.1687. $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{4}$ requires $M, 256.1676)$.

Treatment of the anti-epoxide 5 a with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$

In the same manner as described above, anti-epoxide 5a 200 mg $(0.54 \mathrm{mmol})$ was treated with $47 \% \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.49 \mathrm{~g}, 1.62 \mathrm{mmol})$
at $-78^{\circ} \mathrm{C}$ for 2 h and at $0^{\circ} \mathrm{C}$ for 1 h to provide the cyclopentyl compound $\mathbf{1 7 a}$ ($87 \mathrm{mg}, 32 \%$) and the tetrasubstituted olefinic compound 16 ($81 \mathrm{mg}, 29 \%$) as colorless oils, respectively.

Cyclopentyl compound 17a. $[\alpha]_{\mathrm{D}}^{28}+10.1$ (c 0.89 , MeOH); $v_{\text {max }} / \mathrm{cm}^{-1} 3611$ and $3504(\mathrm{OH}), 1725(\mathrm{OAc}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.81$, 1.16 and 1.31 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Me} \times 3$), $1.47(1 \mathrm{H}$, dd $J 14.5$ and 3, $\left.4-\mathrm{H}_{\beta}\right), 1.67\left(1 \mathrm{H}\right.$, dd, $J 13.5$ and $\left.4.5,2-\mathrm{H}_{\beta}\right), 1.86\left(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}\right)$, $1.98\left(1 \mathrm{H}, \mathrm{dd}, J 13.5\right.$ and $\left.7.5,2-\mathrm{H}_{\alpha}\right), 2.03(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.47$, 2.56 (each, $1 \mathrm{H}, \mathrm{dt}, J 18$ and $\left.6.5,7-\mathrm{H}_{2}\right), 2.81(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and $\left.8.5,4-\mathrm{H}_{\alpha}\right), 4.06\left(2 \mathrm{H}, \mathrm{t}, J 6.5,9-\mathrm{H}_{2}\right), 4.48(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 226.1751. $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{O}_{4}$ requires $\left.M+\mathrm{H}, 226.1574\right]$.

Treatment of the mixture of epoxides $\mathbf{5 a}, \mathrm{b}$ with SnCl_{4}

To a solution of the above mixture of epoxides $\mathbf{5 a}$ and $\mathbf{5 b}$ (ca. $2: 3)(4.43 \mathrm{~g}, 12 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$ was added dropwise $\mathrm{SnCl}_{4}\left(1 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 36 \mathrm{ml}, 36 \mathrm{mmol}\right)$ at $-78{ }^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and the organic layer was washed successively with saturated aq. NaHCO_{3} and brine. Evaporation of the dried solution gave a residue, which was purified by SCC ($\mathrm{Et}_{2} \mathrm{O}$-hexane, $3: 17$) to afford the cyclopentyl compounds $\mathbf{1 7 a}, \mathbf{b}(0.60 \mathrm{~g}, 20 \%)$, the tetrasubstituted olefinic compound 7 ($2.82 \mathrm{~g}, 60 \%$) and the deprotected olefinic compound 16 (0.62 g , 20%) as colorless oils, respectively. Spectral data (IR, ${ }^{1} \mathrm{H}$ NMR and MS) of 7 and 16 were in agreement with data already shown.

Reprotection of the alcohol 16

$\mathrm{TBSCl}(0.82 \mathrm{~g}, 5.5 \mathrm{mmol})$ was added to a stirred solution of the alcohol $16(1.08 \mathrm{~g}, 4.2 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(1.76 \mathrm{ml}, 12.6 \mathrm{mmol})$ and DMAP ($1.03 \mathrm{~g}, 8.4 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ at rt. After being stirred at rt for 15 h , the mixture was poured into icewater and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extracts were washed successively with 5% aq. HCl , saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts gave a residue, which was purified by $\mathrm{SCC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $\left.3: 17\right)$ to afford compound 7 $(1.35 \mathrm{~g}, 87 \%)$ as a colorless oil. Spectral data (IR, ${ }^{1} \mathrm{H}$ NMR and MS) of 7 was in agreement with the rearranged compound of $\mathbf{5 b}$ by $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$.

(4E,7S)-7-tert-Butyldimethylsilyloxy-4,5-dimethyl-8-(2-methyl-1,3-dioxolan-2-yl)oct-4-enyl acetate 19

A solution of TMSOTf $(0.6 \mathrm{ml}, 2.9 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{ml})$ was added dropwise to a stirred solution of the tetrasubstituted olefinic compound $7(1.68 \mathrm{~g}, 4.5 \mathrm{mmol})$ and ethylenedioxydi(trimethylsilane) ($1.87 \mathrm{~g}, 9.1 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . Then, Py $(0.2 \mathrm{ml})$ was added to the reaction mixture at $-78{ }^{\circ} \mathrm{C}$ and the mixture was stirred for 10 min and was poured into saturated aq. NaHCO_{3} and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was dried over a mixture of anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}(1: 1)$ and evaporated to afford a residue, which was purified by $\mathrm{SCC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $1: 9 \longrightarrow$ acetone-hexane, $\left.1: 3\right)$ to give the ethylenedioxy alcohol $18(1.06 \mathrm{~g}, 78 \%)$ as a colorless oil. Then, to a stirred solution of the alcohol 18 (1.06 g, 3.53 mmol) and 2,6-dimethylpyridine(2,6-lutidine) $(1.67 \mathrm{ml}$, $10 \mathrm{mmol})$ in dry THF (20 ml) was added TBSOTf $(1.54 \mathrm{ml}$, 6.7 mmol) at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and the organic layer was washed successively with saturated aq. oxalic acid, saturated aq. NaHCO_{3} and brine. Evaporation of the dried solution gave a residue, which was purified by $\mathrm{SCC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$ hexane, $2: 8)$ to afford compound $19(1.27 \mathrm{~g}, 92 \%)$ as a colorless oil; $[a]_{\mathrm{D}}^{26}+11.1(c \quad 0.90, \mathrm{MeOH}) ; v_{\max } / \mathrm{cm}^{-1} 1731(\mathrm{OAc}) ; \delta_{\mathrm{H}}$ $(500 \mathrm{MHz}) 0.01$ and 0.06 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe} \times 2), 0.87(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Si}^{t} \mathrm{Bu}\right), 1.35(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 1.65$ and 1.66 (each 3 H , br s, $5-\mathrm{Me}$ and $6-\mathrm{Me}), 1.68\left(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}\right), 1.80\left(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J 5,2-\mathrm{H}_{2}\right), 2.05$
$(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.09\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right), 2.18(1 \mathrm{H}, \mathrm{dd}, J 14$ and 7.5 , $4-\mathrm{H}), 2.34(1 \mathrm{H}, \mathrm{dd}, J 14$ and $5.5,4-\mathrm{H}), 3.90\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{O}\right), 3.97(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.03\left(2 \mathrm{H}, \mathrm{t}, J 6.5,9-\mathrm{H}_{2}\right)$ (Found: M ${ }^{+}$, 414.2815. $\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{Si}$ requires $M, 414.2803$).

Methyl (4E,7S)-7-tert-butyldimethylsilyloxy-4,5-dimethyl-8-(2-methyl-1,3-dioxolan-2-yl)oct-4-enoate 21

A solution of the acetate $\mathbf{1 9}(614 \mathrm{mg}, 1.48 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}$ (13 ml) was added dropwise to a stirred suspension of LAH $(56.2 \mathrm{mg}, 1.48 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(13 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 20 min . The excess of LAH was decomposed by dropwise addition of water and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. Standard work-up gave the hydroxy compound which, without purification, was dissolved in dry DMF (4 ml). To this solution was added PDC (2.05 g , 5.34 mmol) and the mixture was stirred at rt for 15 h . The reaction mixture was filtered through Celite and the filtrate was diluted with AcOEt and washed with brine. Evaporation of the dried solution gave a residue, which was purified by SCC (acetone-hexane, 3:7) to afford the carboxylic acid 20 (428 mg , 75%) as a colorless oil; $v_{\text {max }} / \mathrm{cm}^{-1} 3000$ and $1709(\mathrm{COOH})$. This carboxylic acid $\mathbf{2 0}$ was dissolved in a mixture of $\mathrm{MeOH}-$ benzene ($2: 7$), and $\mathrm{TMSCHN}_{2}(2 \mathrm{M}$ in hexane; 0.83 ml , 1.66 mmol) was added dropwise to the solution. After being stirred at rt for 30 min , the reaction mixture was concentrated to give a residue, which was purified by $\mathrm{SCC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $3: 17$) to afford the ester $21(377 \mathrm{mg}, 85 \%)$ as a colorless oil; $[a]_{\mathrm{D}}^{26}$ -2.00 (c $1.00, \mathrm{MeOH}) ; v_{\text {max }} / \mathrm{cm}^{-1} 1731(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz})$ 0.02 and 0.05 (each 3 H , s, SiMe $\times 2$), $0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si} \mathrm{i}^{\prime} \mathrm{Bu}\right), 1.35$ $(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 1.67(6 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$ and $6-\mathrm{Me}), 1.81(2 \mathrm{H}, \mathrm{d}, J 5.5$, $\left.2-\mathrm{H}_{2}\right), 2.19(1 \mathrm{H}$, dd, $J 13.5$ and $7.5,4-\mathrm{H}), 2.34(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and $5.5,4-\mathrm{H}), 2.34\left(4 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right.$ and $\left.8-\mathrm{H}_{2}\right), 3.67(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CO}_{2} \mathrm{Me}$), $3.93\left(5 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}\right.$ and $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$ (Found: M^{+}, 400.2636. $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{O}_{5}$ Si requires $M, 400.2647$).

(3E,6S)-6-tert-Butyldimethylsilyloxy-3,4-dimethyl-7-(2-methyl-1,3-dioxolan-2-yl)hept-3-enal 25

A solution of the ester $\mathbf{2 1}(400 \mathrm{mg}, 1 \mathrm{mmol})$ in dry THF (5 ml) was added to a stirred solution of LDA, prepared from BuLi (1.59 M in hexane; $1.26 \mathrm{ml}, 2 \mathrm{mmol}$) and diisopropylamine ($0.28 \mathrm{ml}, 2 \mathrm{mmol}$) in THF (2 ml), at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min and at $0^{\circ} \mathrm{C}$ for 1 h . Then to the reaction mixture was added a solution of Davis reagent $\mathbf{2 2}[(+)-$ camphorylsulfonyloxaziridine] ($344 \mathrm{mg}, 1.5 \mathrm{mmol}$) in dry THF $(4 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1.5 h . The reaction mixture was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and then extracted with AcOEt. The extracts were washed with saturated aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, dried and evaporated to give a residue, which was purified by SCC (acetone-hexane, 1:9) to afford the hydroxy ester 23 ($217 \mathrm{mg}, 52 \%$) as a colorless oil. Next, a solution of $23(210 \mathrm{mg}, 0.5 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(8 \mathrm{ml})$ was added dropwise to a suspension of LAH ($20.1 \mathrm{mg}, 0.53 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . The excess of LAH was decomposed by dropwise addition of water and the mixture was extracted with AcOEt. Standard work-up gave the 1,2-diol $\mathbf{2 4}$ which, without purification, was dissolved in a mixture of 1,4 -dioxane-water ($3: 1 ; 12 \mathrm{ml}$). To this solution was added $\mathrm{NaIO}_{4}(208 \mathrm{mg}, 0.97 \mathrm{mmol})$ and the mixture was stirred at rt for 1 h . The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. Standard work-up afforded a residue, which was purified by SCC (acetone-hexane, 1:9) to yield the aldehyde $25(166 \mathrm{mg}$, 92% from 23) as a colorless oil; $[a]_{D}^{27}-4.69$ (c $0.64, \mathrm{MeOH}$); $v_{\text {max }} / \mathrm{cm}^{-1} 1719(\mathrm{CHO}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.01$ and 0.06 (each $3 \mathrm{H}, \mathrm{s}$, $\mathrm{SiMe} \times 2), 0.87(9 \mathrm{H}, \mathrm{s}, \mathrm{Si} \mathrm{Bu}), 1.36(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 1.71$ and 1.76 (each $3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$ and $6-\mathrm{Me}), 1.85(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.28(1 \mathrm{H}$, dd, $J 13.5$ and $8,4-\mathrm{H}), 2.46(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and $5,4-\mathrm{H}), 3.08$ and 3.16 (each $1 \mathrm{H}, \mathrm{dd}, J 15.5$ and $\left.2.5,7-\mathrm{H}_{2}\right), 3.91\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}-\right.$ $\mathrm{CH}_{2} \mathrm{O}$), $3.97(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 9.57(1 \mathrm{H}, \mathrm{t}, J 2.5, \mathrm{CHO})$ (Found: $\mathrm{M}^{+}, 356.2356 . \mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Si}$ requires $M, 356.2385$).
(2E,6E,9S)-9-tert-Butyldimethylsilyloxy-3,6,7-trimethyl-10-(2-methyl-1,3-dioxolan-2-yl)-4-oxodeca-2,6-dienal 28
To a stirred solution of the vinyl bromide $\mathbf{2 6}(199 \mathrm{mg}, 0.75 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{ml})$ was added ${ }^{\prime} \mathrm{BuLi}(1.64 \mathrm{M}$ in pentane; 0.46 ml , 0.75 mmol) at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . Then the aldehyde $\mathbf{2 5}(107 \mathrm{mg}, 0.3 \mathrm{mmol})$ was added to this mixture at $-78^{\circ} \mathrm{C}$ and the reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . After being quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$, the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. Standard workup gave a residue, which was purified by $\mathrm{SCC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $1: 4)$ to afford the alcohol $27(133 \mathrm{mg}, 81 \%)$ as a colorless oil. Then, a solution of the alcohol $27(133 \mathrm{mg}, 0.25 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}$-hexane ($1: 2 ; 6 \mathrm{ml}$) was shaken with active $\mathrm{MnO}_{2}(1.33 \mathrm{~g})$ at rt for 8 h . The mixture was filtered through Celite. Evaporation of the filtrate gave crude products which, without purification, were dissolved in THF (3.5 ml). A solution of TBAF (1 M in THF; $0.24 \mathrm{ml}, 0.24 \mathrm{mmol}$) was added to the above solution and the mixture was stirred at rt for 30 min . This was diluted with AcOEt and the organic layer was washed with brine. Evaporation of the dried solution gave a residue, which was purified by SCC (acetone-hexane, $1: 4$) to provide the allyl alcohol ($103 \mathrm{mg}, 98 \%$, from 27) as a colorless oil. Again, a solution of the alcohol ($103 \mathrm{mg}, 0.24 \mathrm{mmol}$) in a mixture of $\mathrm{Et}_{2} \mathrm{O}$-hexane ($1: 2 ; 6 \mathrm{ml}$) was shaken with active MnO_{2} $(513 \mathrm{mg})$ at rt for 3 h . The mixture was filtered through Celite. Evaporation of the filtrate gave a residue, which was purified by SCC (acetone-hexane, $3: 17$) to give the aldehyde $28(69 \mathrm{mg}$, 67%; 53% from 25) as a colorless oil; $[a]_{D}^{22}-3.00$ (c 1.00, $\mathrm{MeOH}) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 242 ; v_{\text {max }} / \mathrm{cm}^{-1} 1681$ (conj. $\mathrm{C}=\mathrm{O}$ and conj. CHO); $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.01$ and 0.07 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe} \times$ 2), $0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}^{\prime} \mathrm{Bu}\right), 1.36(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 1.65$ and 1.67 (each $3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$ and $6-\mathrm{Me}), 1.80(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and $5,2-\mathrm{H}), 1.88$ $(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and $6,2-\mathrm{H}), 2.25(1 \mathrm{H}, \mathrm{dd}, J 14$ and $7.5,4-\mathrm{H})$, $2.26(3 \mathrm{H}, \mathrm{d}, J 1.5,9-\mathrm{Me}), 2.44(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and $6,4-\mathrm{H}$), 3.41 and 3.54 (each $\left.1 \mathrm{H}, \mathrm{d}, J 16.5,7-\mathrm{H}_{2}\right), 3.93\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $3.97(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{H}), 6.58(1 \mathrm{H}, \mathrm{dq}, J 7.5$ and $1.5,10-\mathrm{H}), 10.26(1 \mathrm{H}$, d, $J 7.5, \mathrm{CHO}$) (Found: $\mathrm{M}^{+}, 424.2645 . \mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{Si}$ requires M, 424.2643).

$(2 E, 4 E, 6 E, 8 E, 10 E, 14 E, 17 S)$ - and ($2 E, 4 E, 6 E, 8 Z, 10 E, 14 E, 17 S$)-17-tert-Butyldimethylsilyloxy-2,7,11,14,15-pentamethyl-18-(2-methyl-1,3-dioxolan-2-yl)-12-oxooctadeca-2,4,6,8,10,14-hexaenal 31a and 31b

An acidic solution (0.29 ml) prepared from PTSA (500 mg) and $\mathrm{H}_{3} \mathrm{PO}_{4}(725 \mathrm{mg})$ in $\mathrm{MeOH}(37.5 \mathrm{ml})$ and trimethyl orthoformate ($0.29 \mathrm{ml}, 2.65 \mathrm{mmol}$) was added to a solution of the Wittig salt $29^{16}(316.3 \mathrm{mg}, 0.71 \mathrm{mmol})$ in $\mathrm{MeOH}(4 \mathrm{ml})$. The mixture was stirred at rt for 1 h and neutralized with NaOMe until just before the red color of an ylide appeared, to give a solution of the Wittig salt $\mathbf{3 0}$. To this solution were added a solution of the aldehyde $28(60 \mathrm{mg}, 0.14 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \mathrm{ml})$ and a solution of $\mathrm{NaOMe}(1 \mathrm{M}$ in $\mathrm{MeOH} ; 0.64 \mathrm{ml}$, $0.64 \mathrm{mmol})$, successively. After being stirred at rt for 30 min , the mixture was poured into ice-water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extracts were shaken with 5% aq. HCl until the fine structure disappeared on UV, and then washed successively with saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts provided a residue, which was purified by $\mathrm{SCC}\left(\mathrm{Et}_{2} \mathrm{O}-\right.$ hexane, $3: 7$) to give an isomeric mixture of apocarotenal 31 $(50 \mathrm{mg}, 64 \%)$ in which the main product was all- E isomer 31a. Purification of a part of the isomeric mixture by PHPLC [LiChrosorb Si $60(7 \mu \mathrm{~m}) 1.0 \times 30 \mathrm{~cm}$; acetone-hexane, $1: 9$; 400 nm detect.] followed by PHPLC [LiChrosorb Si $60(7 \mu \mathrm{~m})$ $1.0 \times 30 \mathrm{~cm} ; \mathrm{Et}_{2} \mathrm{O}$-hexane, $3: 7 ; 345 \mathrm{~nm}$ detect.] provided the all- E isomer 31a and the $11 Z$ one 31b as orange solids.

All- E isomer 31a. $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 392$ and $412 \mathrm{sh} ; v_{\max } / \mathrm{cm}^{-1}$ 1673 (conj. $\mathrm{C}=\mathrm{O}$ and conj. CHO), $1605(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz})$ 0.02 and $0.06($ each $3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe} \times 2), 0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}^{\mathrm{B}} \mathrm{Bu}\right), 1.36$
$(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 1.67(6 \mathrm{H}$, br s, $5-\mathrm{Me}$ and $6-\mathrm{Me}), 1.78(1 \mathrm{H}$, dd $J 14.5$ and $5,2-\mathrm{H}), 1.89(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and $6.5,2-\mathrm{H}), 1.90(3 \mathrm{H}$, s, $\left.13^{\prime}-\mathrm{Me}\right), 1.95(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}), 2.06(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 2.25(1 \mathrm{H}$, dd, $J 13.5$ and $7.5,4-\mathrm{H}), 2.44(1 \mathrm{H}$, dd, $J 13.5$ and $6,4-\mathrm{H}), 3.42$ and $3.51\left(\right.$ each $\left.1 \mathrm{H}, \mathrm{d}, J 16,7-\mathrm{H}_{2}\right), 3.92\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $3.99(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 6.43(1 \mathrm{H}, \mathrm{d}, J 11.5,14-\mathrm{H}), 6.64(1 \mathrm{H}, \mathrm{d}, J 15$, $12-\mathrm{H}), 6.73(1 \mathrm{H}$, dd, $J 15$ and $10.5,11-\mathrm{H}), 6.77(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and $\left.12,15^{\prime}-\mathrm{H}\right), 6.97\left(1 \mathrm{H}, \mathrm{d}, J 11,14^{\prime}-\mathrm{H}\right), 7.03(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and $11,15-\mathrm{H}), 7.15(1 \mathrm{H}, \mathrm{d}, J 10,10-\mathrm{H}), 9.54(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$ (Found: $\mathrm{M}^{+}, 556.3586 . \mathrm{C}_{33} \mathrm{H}_{52} \mathrm{O}_{5}$ Si requires $M, 556.3586$).

11Z Isomer 31b. $\lambda_{\text {max }} / \mathrm{nm} 290,372,387$ and $409 \mathrm{sh} ; v_{\text {max }} / \mathrm{cm}^{-1}$ 1660 (conj. $\mathrm{C}=\mathrm{O}$ and conj. CHO), $1606(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz})$ $0.05(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe} \times 2), 0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}^{t} \mathrm{Bu}\right), 1.35(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me})$, 1.64 and 1.67 (each $3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$ and $6-\mathrm{Me}), 1.88(3 \mathrm{H}, \mathrm{s}$, $\left.13^{\prime}-\mathrm{Me}\right), 1.93(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}), 2.15(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 1.58(1 \mathrm{H}, \mathrm{m}$, $2-\mathrm{H}), 1.76(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.25(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.43(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$, 3.39 and 3.48 (each $\left.1 \mathrm{H}, \mathrm{d}, J 16.5,7-\mathrm{H}_{2}\right), 3.92\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{O}\right), 3.98(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 6.31(1 \mathrm{H}, \mathrm{d}, J 11.5,12-\mathrm{H}), 6.39(1 \mathrm{H}$, $\mathrm{d}, J 11.5,14-\mathrm{H}), 6.43(1 \mathrm{H}, \mathrm{t}, J 11.5,11-\mathrm{H}), 6.75(1 \mathrm{H}, \mathrm{dd}, J 15$ and $\left.12,15^{\prime}-\mathrm{H}\right), 6.97\left(1 \mathrm{H}, \mathrm{d}, J 12,14^{\prime}-\mathrm{H}\right), 6.99(1 \mathrm{H}, \mathrm{dd}, J 15$ and $12,15-\mathrm{H}), 7.61(1 \mathrm{H}, \mathrm{d}, J 11.5,10-\mathrm{H}), 9.48(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$ (Found: $\mathrm{M}^{+}, 556.3602 . \mathrm{C}_{33} \mathrm{H}_{52} \mathrm{O}_{5} \mathrm{Si}$ requires $M, 556.3586$).

Synthesis of ($\mathbf{3 R}, 3^{\prime} S$)-crassostreaxanthin B 1a

A solution of $\mathrm{NaOMe}(1 \mathrm{M}$ in $\mathrm{MeOH} ; 0.36 \mathrm{ml}, 0.36 \mathrm{mmol}$) was added to an ice-cooled solution of the isomeric mixture of apocarotenal $31(50.4 \mathrm{mg}, 0.09 \mathrm{mmol})$ and the Wittig salt $32{ }^{17}$ $(186.7 \mathrm{mg}, 0.36 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$. After being stirred at $0{ }^{\circ} \mathrm{C}$ for 5 min , the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ followed by standard work-up to give a residue, which was purified by SCC (acetone-hexane, 1:9) to afford an isomeric mixture of condensed products $(73 \mathrm{mg})$. Then, PTSA $(10 \mathrm{mg})$ was added to an ice-cooled solution of this isomeric mixture in acetone $(9 \mathrm{ml})$ and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h . The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed successively with 5% aq. HCl , saturated aq. NaHCO_{3} and brine. Evaporation of the dried solution gave a residue, which was purified by SCC (acetone-hexane, 3:7) followed by PHPLC [LiChrosorb Si $60(7 \mu \mathrm{~m}) 1.0 \times 30 \mathrm{~cm}$; acetone-hexane, 3:7] to provide the all- E isomer $\mathbf{1 a}(5.2 \mathrm{mg}, 6 \%$ from 28). Spectral properties of the synthetic crassostreaxanthin B were in agreement with those of a natural specimen; ${ }^{2} \lambda_{\text {max }} / \mathrm{nm} 450$ and $475 \mathrm{sh} ; v_{\text {max }} / \mathrm{cm}^{-1} 3601$ and $3448(\mathrm{OH}), 1706($ conj. $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.15$ and 1.20 (each $3 \mathrm{H}, \mathrm{s}$, gem-Me), $1.46\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.64(3 \mathrm{H}, \mathrm{s}$, $\left.6^{\prime}-\mathrm{Me}\right), 1.68\left(3 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{Me}\right), 1.84(1 \mathrm{H}$, ddd, $J 12.5,3.5$ and 2 , $\left.2-\mathrm{H}_{\mathrm{eq}}\right), 1.93(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.95\left(3 \mathrm{H}, \mathrm{s}, 9^{\prime}-\mathrm{Me}\right), 1.98(3 \mathrm{H}, \mathrm{s}$, $13-\mathrm{Me}), 2.00\left(3 \mathrm{H}, \mathrm{s}, 13^{\prime}-\mathrm{Me}\right), 2.02(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}), 2.07(1 \mathrm{H}$, dd, $J 18.5$ and $\left.9.5,4-\mathrm{H}_{\mathrm{ax}}\right), 2.21\left(3 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{Me}\right), 2.22(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and $\left.5.5,4^{\prime}-\mathrm{H}\right), 2.42\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{eq}}\right), 2.44(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and 8 , $\left.4^{\prime}-\mathrm{H}\right), 2.65\left(2 \mathrm{H}, \mathrm{d}, J 7.5,2^{\prime}-\mathrm{H}_{2}\right), 3.49$ and $3.58($ each 1 H , d, $\left.J 16.5,7^{\prime}-\mathrm{H}_{2}\right), 3.99(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.20\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 6.29(1 \mathrm{H}$, $\mathrm{d}, J 11,14-\mathrm{H}), 6.36(1 \mathrm{H}, \mathrm{d}, J 14.5,12-\mathrm{H}), 6.40(1 \mathrm{H}, \mathrm{d}, J 10.5$, $\left.14^{\prime}-\mathrm{H}\right), 6.46(1 \mathrm{H}, \mathrm{d}, J 11,10-\mathrm{H}), 6.56(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and 11 , $11-\mathrm{H}), 6.64\left(1 \mathrm{H}, \mathrm{dd}, J 15.5\right.$ and $\left.9.5,11^{\prime}-\mathrm{H}\right), 6.66(1 \mathrm{H}, \mathrm{d}, J 15.5$, $\left.12^{\prime}-\mathrm{H}\right), 6.69\left(1 \mathrm{H}\right.$, dd, $J 16$ and $\left.10.5,15^{\prime}-\mathrm{H}\right), 6.74(1 \mathrm{H}$, dd, $J 16$ and $11,15-\mathrm{H}), 7.19\left(1 \mathrm{H}, \mathrm{d}, J 9.5,10^{\prime}-\mathrm{H}\right)$ (Found: $\mathrm{M}^{+}, 598.4037$. $\mathrm{C}_{40} \mathrm{H}_{54} \mathrm{O}_{4}$ requires $M, 598.4025$).

(4S,6R)-4-tert-Butyldimethylsilyloxy-1-ethynyl-2,2,6-trimethylcyclohexanol 36

$\mathrm{TMSCl}(75 \mathrm{ml}, 0.60 \mathrm{~mol})$ was added to a stirred solution of the $(4 S, 6 R)$-hydroxy ketone $33^{19}(85 \mathrm{~g}, 0.54 \mathrm{~mol}), \mathrm{Et}_{3} \mathrm{~N}(90 \mathrm{ml}$, $0.65 \mathrm{~mol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(750 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at rt for 4 h , poured into ice-water and extracted with $\mathrm{Et}_{2} \mathrm{O}$ The extracts were washed successively with 5% aq. HCl , saturated aq. NaHCO_{3} and brine. Evaporation of the dried solution followed by distillation ($68-71^{\circ} \mathrm{C} / 0.62 \mathrm{mmHg}$) gave
the ($4 S$)-siloxy ketone $34(118 \mathrm{~g}, 95 \%)$ as a colorless oil. Then, in the same manner as described for the preparation of α acetylenic alcohol 10, the $(4 S)$-siloxy ketone $34(10.7 \mathrm{~g}, 47$ mmol) was treated with lithium trimethylsilylacetylide to give a crude product, which was purified by recrystallization (from AcOEt-hexane) to provide the ($4 S$)-diol 35 (diastereomeric mixture) $(7.81 \mathrm{~g}, 91 \%)$. TBSCl $(4.78 \mathrm{~g}, 0.03 \mathrm{~mol})$ was added to a stirred solution of the diol $35(5.5 \mathrm{~g}, 0.03 \mathrm{~mol}), \mathrm{Et}_{3} \mathrm{~N}(5 \mathrm{ml}, 0.04$ $\mathrm{ml})$ and DMAP $(4.42 \mathrm{~g}, 0.04 \mathrm{~mol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ at rt . The mixture was stirred at rt for 1.5 h , poured into ice-water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extracts were washed successively with 5% aq. HCl , saturated aq. NaHCO_{3} and brine. Evaporation of the dried solution followed by $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $\left.1: 9\right)$ afforded the TBS ether $36(8.4 \mathrm{~g}, 94 \% ; 65 \%$ from 33$)$ as a colorless oil; $v_{\max } / \mathrm{cm}^{-1} 3609,3477(\mathrm{OH}), 3306(\equiv \mathrm{CH}), 2107(\mathrm{C} \equiv \mathrm{C}) ; \delta_{\mathrm{H}}$ $(300 \mathrm{MHz}) 0.05(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe} \times 2), 0.876(9 \mathrm{H}, \mathrm{s}, \mathrm{Si} \mathrm{Bu}), 1.00$ and 1.12 (each 3 H , s, gem-Me), $1.06(3 \mathrm{H}, \mathrm{d}, J 6.5,5-\mathrm{Me}), 1.44(1 \mathrm{H}$, td-like, $J 13$ and 11, $\left.4-\mathrm{H}_{\mathrm{ax}}\right), 1.52(1 \mathrm{H}$, ddd, $J 13,5$ and 2.5, $\left.2-\mathrm{H}_{\mathrm{eq}}\right), 1.64\left(1 \mathrm{H}, \mathrm{dd}, J 13\right.$ and $\left.11,2-\mathrm{H}_{\mathrm{ax}}\right), 1.72\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{eq}}\right)$, $1.94(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 8-\mathrm{H}), 3.83(1 \mathrm{H}, \mathrm{tt}, J 11$ and 5 , 3-H) (Found: $\mathrm{M}^{+}, 296.2161 . \mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{2}$ Si requires M, 296.2173).

[(4S)-4-tert-Butyldimethylsilyloxy-2,6,6-trimethylcyclohex-1-enyl]acetaldehyde 11

In the same manner as described for the preparation of $(3 R)$ aldehyde 11, ($3 S$)-aldehyde $\mathbf{1 1}$ (8.2 g , quant.) was obtained as a colorless oil from ($3 S$)- α-acetylenic alcohol $36(8.2 \mathrm{~g}, 28 \mathrm{mmol}$); $[a]_{\mathrm{D}}^{26}+17.0(c 1.00, \mathrm{MeOH})$.

2-[(4S)-4-tert-Butyldimethylsilyloxy-2,6,6-trimethylcyclohex-1-enyl]ethanol 12

In the same manner as described for the preparation of $(3 R)$ alcohol 12, (3S)-alcohol 12 ($7.8 \mathrm{~g}, 96 \%$) was obtained as a colorless oil from ($3 S$)-aldehyde $11(8.1 \mathrm{~g}, 27 \mathrm{mmol}) ;[\alpha]_{\mathrm{D}}^{27}+48.0$ (c $1.00, \mathrm{MeOH}$).

3-[(4S)-4-tert-Butyldimethylsilyloxy-2,6,6-trimethylcyclohex-1-enyl]propanenitrile 13

In the same manner as described for the preparation of $(3 R)$ nitrile 13, ($3 S$)-nitrile $13(4.5 \mathrm{~g}, 57 \%$) was obtained as a colorless oil from ($3 S$)-alcohol $12(7.7 \mathrm{~g}, 26 \mathrm{mmol}) ;[a]_{\mathrm{D}}^{27}+48.0$ (c 1.00, MeOH).

3-[(4S)-4-tert-Butyldimethylsilyloxy-2,6,6-trimethylcyclohex-1-enyl]propan-1-ol 14

In the same manner as described for the preparation of $(3 R)$ alcohol 14, (3S)-alcohol $14(4.0 \mathrm{~g}, 91 \%)$ was obtained as a colorless oil from (3S)-nitrile $13(4.3 \mathrm{~g}, 14 \mathrm{mmol})$; $[a]_{\mathrm{D}}^{25}+50.0$ (c $1.00, \mathrm{MeOH}$).

3-[(4S)-4-tert-Butyldimethylsilyloxy-2,6,6-trimethylcyclohex-1-enyl]propyl acetate 15

In the same manner as described for the preparation of $(3 R)$ acetate $\mathbf{1 5}$, ($3 S$)-acetate $\mathbf{1 5}(4.0 \mathrm{~g}, 91 \%$) was obtained as a colorless oil from $(3 S)$-alcohol $14(3.8 \mathrm{~g}, 12 \mathrm{mmol}) ;[\alpha]_{\mathrm{D}}^{25}+39.0$ (c $1.00, \mathrm{MeOH}$).

3-[(1R,4R,6S)- and (1S,4R,6R)-4-tert-Butyldimethylsilyloxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]propyl acetate 5a and 5b

In the same manner as described for the preparation of $(3 R)$ epoxide 5 , a mixture of $(3 S)$-epoxides $\mathbf{5 a}, \mathbf{b}$ ($3.98 \mathrm{~g}, 99 \%$) was obtained as a colorless oil from ($3 S$)-acetate 15 (3.84 g, $11 \mathrm{mmol})$. A part of the epoxides was purified by $\mathrm{SCC}\left(\mathrm{Et}_{2} \mathrm{O}-\right.$ hexane, $4: 96$) to provide the anti-epoxide 5a and syn-epoxide $\mathbf{5 b}$, each as a colorless oil.
anti-Epoxide 5a. $[\alpha]_{\mathrm{D}}^{27}+21.7(c 0.46, \mathrm{MeOH})$.
syn-Epoxide 5b. $[\alpha]_{\mathrm{D}}^{27}+34.0(c 0.50, \mathrm{MeOH})$.

($6 E, 4 R$)-10-Acetoxy-4-tert-butyldimethylsilyloxy-6,7-dimethyldec-6-en-2-one 7

In the same manner as described for the rearrangement of $(3 R)$-epoxides $\mathbf{5 a}, \mathbf{b}$ with $\mathrm{SnCl}_{4},(3 R)$-tetrasubstituted olefinic compound $7(2.50 \mathrm{~g}, 65 \%)$ was obtained as a colorless oil from $(3 S)$-epoxides 5a,b $(3.86 \mathrm{~g}, 10 \mathrm{mmol}) ;[a]_{\mathrm{D}}^{27}-8.40$ (c 1.31 , $\mathrm{MeOH})$.

(4E,7R)-7-tert-Butyldimethylsilyloxy-4,5-dimethyl-8-(2-methyl-1,3-dioxolan-2-yl)oct-4-enyl acetate 19

In the same manner as described for the preparation of (3S)ketal 19, (3R)-ketal $19(2.26 \mathrm{~g}, 81 \%)$ was obtained as a colorless oil from ($3 R$)-tetrasubstituted olefinic compound $7(2.50 \mathrm{~g}$, $6.76 \mathrm{mmol}) ;[a]_{\mathrm{D}}^{27}-10.4(c 1.06, \mathrm{MeOH})$.

Methyl (4E,7R)-7-tert-butyldimethylsilyloxy-4,5-dimethyl-8-(2-methyl-1,3-dioxolan-2-yl)oct-4-enoate 21

In the same manner as described for the preparation of (3S)methyl ester 21, ($3 R$)-methyl ester $21(0.83 \mathrm{~g}, 45 \%)$ was obtained as a colorless oil from ($3 R$)-ketal $19(1.93 \mathrm{~g}, 4.66 \mathrm{mmol})$; $[a]_{\mathrm{D}}^{26}$ +11.7 ($c 0.94, \mathrm{MeOH})$.

(3E,6R)-6-tert-Butyldimethylsilyloxy-3,4-dimethyl-7-(2-methyl-1,3-dioxolan-2-yl)hept-3-enal 25

In the same manner as described for the preparation of (3S)aldehyde 25, ($3 R$)-aldehyde 25 ($236 \mathrm{mg}, 32 \%$) was obtained as a colorless oil from ($3 R$)-methyl ester $21(820 \mathrm{mg}, 2.05 \mathrm{mmol})$; $[a]_{\mathrm{D}}^{27}+3.33(c 0.3, \mathrm{MeOH})$.

(2E,6E,9R)-9-tert-Butyldimethylsilyloxy-3,6,7-trimethyl-10-(2-methyl-1,3-dioxolan-2-yl)-4-oxodeca-2,6-dienal 28

In the same manner as described for the preparation of ($3 S$)aldehyde 28, ($3 R$)-aldehyde $28(113 \mathrm{mg}, 44 \%)$ was obtained as a colorless oil from ($3 R$)-aldehyde $25(214 \mathrm{mg}, 0.60 \mathrm{mmol}$); $[a]_{\mathrm{D}}^{23}+8.00(c 1.0, \mathrm{MeOH})$.

($2 E, 4 E, 6 E, 8 E, 10 E, 14 E, 17 R)$-17-tert-Butyldimethylsilyoxy-2,7,11,14,15-pentamethyl-18-(2-methyl-1,3-dioxolan-2-yl)-12-oxooctadeca-2,4,6,8,10,14-hexaenal 31

In the same manner as described for the preparation of ($3 S$)apocarotenal 31, ($3 R$)-apocarotenal 31 ($94 \mathrm{mg}, 65 \%$) was obtained as an orange solid from ($3 R$)-aldehyde $28(110 \mathrm{mg}$, 0.26 mmol).

Synthesis of ($\mathbf{3 R}, \mathbf{3}^{\prime} \boldsymbol{R}$)-crassostreaxanthin B 1b

In the same manner as described for the preparation of ($3 R, 3^{\prime} S$)-crassostreaxanthin B 1a, $\left(3 R, 3^{\prime} R\right)$-crassostreaxanthin B 1b ($10 \mathrm{mg}, 10 \%$) was obtained as a red solid from ($3 R$)apocarotenal $31(94 \mathrm{mg}, 0.17 \mathrm{mmol})$.

Acknowledgements

We are indebted to Dr U. Hengartner, Hoffmann-La Roche Ltd., Basel, Switzerland for his kind gift of a large amount of ($4 R, 6 R$)-4-hydroxy-2,2,6-trimethylcyclohexanone. We appreciate Dr T. Maoka, Kyoto Pharmaceutical University, for an invaluable gift of natural crassostreaxanthin B.

References

1 Part 6: Y. Yamano, Y. Sato, Y. Watanabe, K. Namikawa, W. Miki and M. Ito, J. Chem. Soc., Perkin Trans. 1, 2001, 1862.
2 Y. Fujiwara, T. Maoka, M. Ookubo and T. Matsuno, Tetrahedron Lett., 1992, 33, 4941.
3 (a) T. Matsuno and M. Ookubo, Tetrahedron Lett., 1981, 22, 4659; (b) T. Matsuno, M. Ookubo, T. Nishizawa and I. Shimizu, Chem. Pharm. Bull., 1984, 32, 4309.
4 (a) A. Khare, G. P. Moss and B. C. L. Weedon, Tetrahedron Lett., 1973, 3921; (b) T. Maoka and Y. Fujiwara, J. Jpn. Oil. Chem. Soc., 1996, 45, 667.
5 A. K. Chopra, A. Khare, G. P. Moss and B. C. L. Weedon, J. Chem. Soc., Perkin Trans. 1, 1988, 1383; B. C. L. Weedon, Pure Appl. Chem., 1973, 35, 113.
6 C. Tode, Y. Yamano and M. Ito, J. Chem. Soc., Perkin Trans. 1, 1999, 1625.

7 Y. Yamano, C. Tode and M. Ito, J. Chem. Soc., Perkin Trans. 1, 1998, 2569.

8 Y. Yamano and M. Ito, J. Chem. Soc., Perkin Trans. 1, 1993, 1599.
9 H. Pauling, D. A. Andrew and N. C. Hindley, Helv. Chim. Acta, 1976, 59, 1233.
10 Y. Yamano, C. Tode and M. Ito, J. Chem. Soc., Perkin Trans. 1, 1995, 1895.

11 W. G. Dauben, J. M. Gerdes and G. C. Look, J. Org. Chem., 1986, 51, 4964.
12 E. J. Corey and G. Schmit, Tetrahedron Lett., 1975, 3269.
13 N. Hashimoto, T. Aoyama and T. Shioiri, Chem. Pharm. Bull., 1981, 29, 1475.
14 (a) F. A. Davis and B.-C. Chen, Chem. Rev., 1992, 92, 919; (b) F. A. Davis, G. V. Raddy, B.-C. Chen, A. Kumar and M. S. Haque, J. Org. Chem., 1995, 60, 6148.
15 (a) M. Schlosser and E. Hammer, Helv. Chim. Acta, 1974, 57, 2547; (b) A. R. de Lera, B. Iglesias, J. Rodríguez, R. Alvarez, S. López, X. Villanueva and E. Padrós, J. Am. Chem. Soc., 1995, 117, 8220.

16 K. Bernhard, F. Kienzle, H. Mayer and R. K. Müller, Helv. Chim. Acta, 1980, 63, 1473.
17 E. Widmer, M. Soukup, R. Zell, E. Broger, H. P. Wagner and M. Imfeld, Helv. Chim. Acta, 1990, 73, 861.

18 This was kindly supplied by Dr Maoka, Kyoto Pharmaceutical University.
19 H. G. W. Leuenberger, W. Boguth, E. Widmer and R. Zell, Helv. Chim. Acta, 1976, 59, 1832.

